INHIBITION OF HIV REPLICATION BY 19-0-n-PENTYLDAMAVARICIN Fc IN VITRO

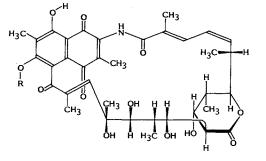
Sir:

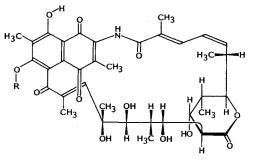
Damavaricin Fc (Fig. 1) is an atropisomeric mixture of two isomers which were produced from streptovaricin C by alkaline degradation¹⁾. We have investigated the biological activities of several derivatives of damavaricin Fc (DvFc) that have different alkyl ether linkages at the C-19 position of the naphthoquinone ring of the molecule. One of those derivatives, 19-O-n-pentyldamavaricin Fc (n-pentyl-DvFc) (Fig. 1) has shown inhibitory activity against focus formation by the mouse sarcoma virus/mouse leukemia virus complex and is known as an inhibitor of reverse transcriptase¹). Recently, we also found that n-pentyl-DvFc seemed to act on sulfhydryl groups of the cell membrane in HTLV-I-infected T-cells²⁾. In this report, we describe the effect of *n*-pentyl-DvFc on HIV replication.

MT-4 cells were exposed to HIV at a multiplicity of infection of 0.006 for 1 hour at 37°C. The HIV had been obtained from the culture supernatant of HIV-infected Molt-4 cells. After washing, cells were resuspended in RPMI-1640 supplemented with 10% fetal calf serum (FCS) to give a concentration of 3×10^5 cells/ml, and were incubated in the presence or absence of various concentrations of *n*-pentyl-DvFc in a CO₂ incubator.

H-9, HUT-78 (HTLV-I-negative T-cell line) or U937 clone 16 (monocytoid) cells were suspended at a concentration of 1×10^5 cells/ml in 1 ml of RPMI-1640 supplemented with 10% FCS containing various concentrations of *n*-pentyl-DvFc. The cells were mixed with 1 ml of HIV suspension of which the titer has been adjusted to give about 50% cells expressing HIV-antigen after incubation for 6 days.

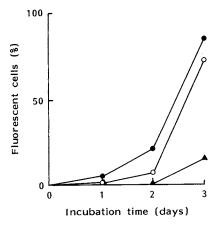
Indirect immunofluorescence (IF)³⁾ was used to evaluate the expression of HIV-specific antigen and the frequency of antigen-positive cell was calculated.

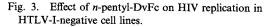

When MT-4 cells were used as host, only 19% of cells expressed HIV-antigen in the presence of *n*-pentyl-DvFc ($2.5 \mu g/ml$) whereas no-drug control cells showed 81% positive on the third day after infection (Fig. 2). However, the MT-4 cell line is one of the HTLV-I-transformed cell lines which have been known to be highly sensitive to cytotoxicity of *n*-pentyl-DvFc²). In fact, MT-4 cells seemed to be almost in a static state under this condition ($2.5 \mu g/ml$).


Thus, we examined the anti-HIV effect of *n*-pentyl-DvFc using the HTLV-I-negative cell lines, H-9, HUT-78 or U937 as permissive host cells of HIV. In these cells, the 50% cytotoxic dose (CD₅₀) of *n*-pentyl-DvFc was in the range of 9 μ g/ml (U937) to 16 μ g/ml (HUT-78), and was higher than that of MT-4 cells (2 μ g/ml).

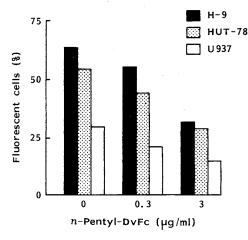
n-Pentyl-DvFc suppressed the expression of HIV-antigen in dose dependent manner in these three cell lines (Fig. 3). About 50% inhibition (ED₅₀) was observed at a concentration of $3 \mu g/ml$. 3'-Azido-3'-deoxythymidine (AZT), used as a positive control, showed ED₅₀ values ranging from 0.013 $\mu g/ml$ (H-9) to 0.024 $\mu g/ml$ (HUT-78).

The mechanism of the inhibitory effect of *n*-pentyl-DvFc on HIV replication is not clear at the present moment. Selective efficacy (ratio of CD_{50} to ED_{50}) of *n*-pentyl-DvFc was in the range of about 3 to 5 in these three cell lines, suggesting that this drug acts on the host cell metabolism rather than on the virus itself.




DvFc R = H*n*-Pentyl-DvFc R = n-Pentyl

AUG. 1990


Fig. 2. Effect of n-pentyl-DvFc on HIV replication.

MT-4 cells were infected with HIV at a multiplicity of infection of 0.006 and incubated in the absence (\bullet) or presence ($\circ l \mu g/ml$, $\triangleq 2.5 \mu g/ml$) of *n*-pentyl-DvFc. For the expression of HIV-specific antigens, indirect immunofluorescence was done.

H-9, HUT-78, or U937 cells were infected with HIV and incubated in the presence of *n*-pentyl-DvFc. After 6 days, cells were subjected to immunofluorescence.

Although the HIV-specificity is low as compared to that of HIV-selective inhibitors including AZT, *n*-pentyl-DvFc might be useful for the therapy of HIV-infected diseases in combination with anti-HIV drugs.

SHIN-ICHI ITO

Shin-Etu Chemical Co., Ltd., Ohte-machi, Chiyoda-ku, Tokyo 100, Japan

GUSTAV GILLJAMS BRITTA WAHREN

Department of Virology, National Bacteriological Laboratory, Stockholm, Sweden

HANS WIGZELL

Department of Immunology, Karolinska Institute, Stockholm, Sweden

ΝΑΟΚΙ ΥΑΜΑΜΟΤΟ

Department of Virology and Parasitology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755, Japan

KAZUYA SASAKI

Kaken Pharmaceutical Co., Ltd., Bunkyo-ku, Tokyo 113, Japan

KAZUKIYO ONODERA*

Department of Agricultural Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

(Received February 19, 1990)

References

- ONODERA, K.; A. HIRAGUN, M. SATO, H. MITSUI & K. SASAKI: Inhibition of focus formation on rat cells by mouse sarcoma virus by damavaricin Fc derivatives. J. Antibiotics 32: 545~547, 1979
- 2) ITO, S.; N. YAMAMOTO, K. NOMOTO, K. SASAKI & K. ONODERA: Selective killing of human T cell lymphotropic virus type I-transformed cell lines by a damavaricin Fc derivative. J. Antibiotics 42: 779~787, 1989
- NAKASHIMA, H.; T. YOSHIDA, S. HARADA & N. YAMAMOTO: Recombinant human interferon gamma suppressed HTLV-III replication *in vitro*. Int. J. Cancer 38: 433~436, 1986